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Abstract
The stationary, shear rate dependent flow curves of yielding glasses are
discussed within a mode coupling theory approach. Asymptotic formulae
for the shear stress at the transition point are obtained that take the form of
generalized Hershel–Bulkeley constitutive equations, and enable one to find
dynamical yield stresses by extrapolation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dense colloidal suspensions exhibit a variety of interesting features when exposed to strong
stationary shear flows. The suspensions owe this behaviour to the nonlinear interactions among
the particles. At higher packing fractions one can observe a transition from a yielding solid
to a shear-thinning fluid, which could be closely related to the glass transition in colloidal
liquids. A very promising description of the latter phenomenon in quiescent dispersions has
been provided by mode coupling theory (MCT). Yet, sheared systems are driven by external
forces and situated quite far off thermal equilibrium. Therefore, the successful MCT approach
was recently extended to account for the transient dynamics of suspensions under shear [1].
Starting from the microscopic Smoluchowski equation for interacting Brownian particles under
stationary shearing, exact expressions for the shear dependent averages of various quantities
have been obtained in the form of Green–Kubo relations. Mode coupling approximations
render the equations predictive. The approach assumes a linear flow profile, as has been
observed in dense polydisperse systems [2, 3], and neglects hydrodynamic interactions. Small
shear rates γ̇ are considered, where shear affects the slow structural rearrangements in the
dense dispersion, while it is assumed that solvent-induced effects and symmetry broken states,
e.g. shear-banded ones3, only occur at higher shear rates.

A state of yielding glass characterized by a finite dynamic yield stress is predicted, which
cannot be explained using linear response formalisms. In order to achieve insight into such
novel aspects of colloidal systems under shear, simplified MCT models have been formulated

3 Under certain circumstances, flow heterogeneity may occur at low shear rates [4].
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within the approach that already exhibit universal features of shear thinning, yielding and
jamming [5]; first comparisons with experimental data from model systems have supported
the approach [6]. In the present contribution we focus on a simple model in order to provide
information on how to determine the predicted glassy yield stresses, and compare model results
with large scale molecular dynamics simulation data for a binary Lennard-Jones mixture; the
latter tests the soundness of our approach.

2. Theory

2.1. Universal aspects and schematic models

The physics of shear-thinning fluids and yielding solids exhibits qualitative aspects that are
solely determined by the underlying transition that separates the two states. Two competing
processes have been identified in this respect. On the one hand, with increasing particle
interaction or density, the dynamics of the quiescent system slows down tremendously due to
the cage effect. Finally, the system ends up in a nonergodic state, in which equilibrium is no
longer reached. On the other hand, shearing results in a decorrelation of density fluctuations
and leads to a loss of internal stresses. These two different mechanisms introduce two different
timescales—one determined by the internal structural dynamics and the other one imposed by
the flow. In molecular dynamics simulations of structural glasses, evidence of these specific
timescales has been found [7].

Because the transition from shear-thinning fluid to yielding solid occurs in any MCT
model that includes the essential bifurcation scenario, it is possible to capture universal aspects
by simplified schematic models, if they obey the same stability equations. For instance the
extensively studied F (γ̇ )

12 -model considers one normalized correlator, which conforms to a
generalized relaxation equation [8]:

∂

∂ t
�(t) + �

{
�(t) +

∫ t

0
dt ′ m(t − t ′)

∂

∂ t ′ �(t ′)
}

= 0. (1)

A vanishing memory kernel m ≡ 0 would lead to an exponential relaxation of the correlator:
�(t) = exp(−�t). Memory effects connected with the cage effect cause retardation and a
more complicated relaxation behaviour. A simple ansatz suffices to model this:

m(t) = 1

1 + (γ̇ t)2

[
v1�(t) + v2�

2(t)
]
. (2)

The time dependence of the two vertices vi/(1 + (γ̇ t)2) � 0 describes the decay of memory
caused by shearing. It naturally emerges in the microscopic approach due to the decorrelation
of density fluctuations as a consequence of the advection of wavevectors [1, 8, 9]. Increasing
vertices vi model the cage effect and lead, in the absence of shear (γ̇ = 0), to glassy
(nonergodic) solutions �(t → ∞) → f > 0, that arrest at a finite ‘glass form factor’ f
for long times. A typical bifurcation, separating fluid (ergodic, with �(t → ∞) = 0) from
glassy solutions, lies at vc

1 = √
4vc

2−vc
2 and vc

2 = 2, and we chose the path v1 = vc
1+ε/(

√
vc

2−1)

at constant v2 = vc
2 crossing it. The separation parameter ε in general separates fluid (ε < 0)

from glassy (ε � 0) states, which with applied shear, however, also decay at long times
�(t → ∞, γ̇ �= 0) = 0. The transport coefficient of interest, the viscosity η, and the
shear stress will, following Maxwell, be determined by the mean relaxation time of the
correlator �(t):

σ = γ̇ η = γ̇

∫ ∞

0
dt �(t). (3)
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At very high shear rates, the viscosity is given by the above-mentioned decay rate η∞ = 1/�

leading back to the case of exponential relaxation.

2.2. Yield stresses and scaling laws of yielding glasses

An interesting consequence of the present approach to steadily sheared glasses is the prediction
of a dynamic yield stress; its existence has been shown not only in schematic models but also
in the full microscopic framework [1]. The ideal glass state of classical MCT [10] is shear
melted with even an infinitesimal shear rate γ̇ provided one waits long enough so that the
system can reach the stationary state after the decay of the transients. Because the transients
at finite γ̇ possess τγ̇ = cs/|γ̇ | as the longest relaxation time (with constant cs that takes the

value c = 0.594 for the F (γ̇ )

12 -model), reaching the stationary state should always be possible by
applying finite shear rates during the preparation of the system. Starting with large shear rates
to melt the solid state or to prevent arrest during a quench into glassy states, and then reducing
the shear rate, allows one to approach the limit of vanishing shear rate where a yielding of the
glassy state is predicted regardless of how small γ̇ becomes. The stress does not fall below a
finite yield stress value because the decay of the transients requires driving by shear.

These aspects can be analysed in detail close to the glass transition, namely for |ε| �
εγ̇ = |γ̇ t0|m̃ � 1, where—as shown in the appendix—the F (γ̇ )

12 -model is solved at long times
by the expansion

�(t, γ̇ , ε) = �+(t̃) + |γ̇ t0|m�+(1)(t̃) + |γ̇ t0|2m�+(2)(t̃) + · · · , (4)

where t̃ = t/τγ̇ , and the �+ and �+(i) are ε- and γ̇ -independent functions introduced in
equation (A.1) in the appendix. The parameter t0 is a matching time, set by the crossover to
the initial decay connected with �; in the model t0� = 0.43 is found. The exponents are given
by m̃ = 2a

1+a , m ′ = 2λ−1
2λ

and m = m̃m ′, with the familiar MCT exponents [10], that take the
values λ = 0.707 and a = 0.324 at the chosen transition, yielding m = 0.143 and m̃ = 0.489.
Clearly, the scaling functions, which describe the final relaxation of the transients, exhibit the
claimed shear-induced relaxation time τγ̇ . The power-law appearance of γ̇ in the coefficients
of the expansion arises from the nonlinear stability equation describing the shear melting of the
glassy structure [8]. Inserting this expansion into equation (3) gives the asymptotic expansion
of the stress curves close to the glass transition or for not too small shear rates. It takes the
form of a generalized Hershel–Bulkeley constitutive equation:

σ(γ̇ , ε � εγ̇ ) = σ +
c

(
1 + |γ̇ /γ̇∗|m + c2|γ̇ /γ̇∗|2m + c3|γ̇ /γ̇∗|3m + · · ·) , (5)

where γ̇∗ is an upper limit to the shear rate where this expansion holds because of the
requirement |γ̇ /γ̇∗| ∝ |γ̇ t0| � 1; the F (γ̇ )

12 -model gives γ̇∗ = 10−2.41�, and σ +
c = 0.10,

c2 = 0.896, and c3 = 0.950. Figure 1 shows numerically obtained stress versus shear rate
curves in yielding glassy states, ε � 0, and the (fitted) expansion from equation (5). (The fit
gives the values for the parameters ci reported above.) It describes well the critical shear curve
(at ε = 0), and curves in the glass for not too small shear rates, γ̇ 	 γ̇∗|ε|1/m .

Deeper in the glass or for smaller γ̇ than estimated above, the yield stress exhibits a
ε-dependent plateau that rises quickly and is independent of γ̇ [8]:

σ +(ε) = σ(γ̇ , ε 	 εγ̇ ) = σ +
c + σ ′√ε + · · · . (6)

Numerical results from the F (γ̇ )

12 -model shown in figure 1 clearly exhibit this law for small
enough ε.
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Figure 1. Steady state stress versus shear rate curves, σ(γ̇ ), for glassy states (ε � 0) in the
F(γ̇ )

12 -model. The separation parameters are ε = 0 (solid line; hidden by other lines), and
log10 ε = −4.39, −3.79, −3.19, −2.59, −1.98, and −1.38 from bottom to top. The ε-independent
asymptotes from equation (5) are shown as chain curves labelled with the highest power included.
The high shear rate behaviour is also indicated. Plus signs mark where the stresses have increased
by 10% above the yield value, σ(γ̇+, ε) = 1.1σ +(ε). Small times signs mark where the shear rates
of glass curves differ horizontally by 20% from the curve at ε = 0, σ(γ̇x , ε) = σ(1.2γ̇ , ε = 0).
The inset shows the dynamic yield stresses versus the separation parameter, σ+(ε), and the square
root asymptote (dashed line) from equation (6). Also shown are the crossover shear rates from the
estimates in the main panel; they show power-law behaviour, γ̇+ ∼ ε0.70 and γ̇x ∼ ε1/m̃ .

3. Simulation data and analysis with the schematic model

In large scale molecular dynamics simulations a 80:20 binary mixture of Lennard-Jones
particles at constant density was used. This model has well known equilibrium properties
and many aspects that can be understood consistently within MCT [11]. To account for
shearing, it was used together with Lees–Edwards boundary conditions and the SLLOD
equations of motion to develop a linear velocity profile. (Note that in the simulation,
solvent effects are obviously lacking, and the simulated flow curves thus provide support
for the notion that shear thinning can arise from shear-induced speeding up of the structural
relaxation.)

Figure 2 shows the stress–shear rate dependence as flow curves, for temperatures ranging
from supercooled states to the glassy regime. The solid lines are fits to the simulation
data with the F (γ̇ )

12 -model, which reproduce the transition from a shear-thinning fluid to a
yielding solid quite well. Coming from high shear rates, the flow curves of the supercooled
state pass to the linear response regime in the lower left corner, indicated by a dashed–
dotted line with slope 1. On approaching the transition point, the linear response regime
shifts to lower and lower shear rates. Beyond the fluid domain, the existence of a dynamic
yield stress σ + = limγ̇→0 σ > 0 is supported by the simulation results, which sustain the
discontinuous change in dynamic yield stress and generate a stress plateau over three decades
in shear rate. Best F (γ̇ )

12 -model fits are obtained for a Tc = 0.4 suggesting a slightly lower
transition temperature [5, 12] as determined from the simulations of the quiescent system,
where Tc = 0.435 was found [11].
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Figure 2. Flow curves σ(γ̇ ) reaching from the supercooled to the glassy state of a simulated binary
LJ mixture. The data points correspond to the temperatures T = 0.525, 0.5, 0.45, 0.44, 0.43, 0.42,
0.4, 0.38, 0.3, 0.2, and 0.01 in LJ units (from bottom to top). F(γ̇ )

12 -model curves fitted by eye
are included as lines. The inset shows the relation between the fitted separation parameters and
temperature. Units are converted using σ = 1.5σtheo and γ̇ = 1.3γ̇theo�; from [13]. The arrows
mark the values of the extrapolated dynamic yield stresses σ +(ε).
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Appendix

In this appendix the derivation of equation (4) within the F (γ̇ )

12 -model is sketched; for more
details see [8, 14]. Close to the transition, namely for ε → 0, and for small shear rates, |γ̇ | → 0,
the correlator develops a plateau for intermediate times, �(t) = fc +(1− fc)

2G(t)+ · · ·, where
the slowly varying scaling functionGobeys the (universal—within the approach of [1]) stability
equation that describes the yielding of a glass. Close to the transition, |ε| � εγ̇ � 1, and for
times t in between tγ̇ = t0ε

−1/2a
γ̇ � t � τγ̇ , the function G possesses the expansion [8]

G = √
εγ̇ Ğ(t/tγ̇ ) = −

√
εγ̇

cs

t

tγ̇

[
1 − α̂1

(
t

tγ̇ cs

)−2m′

− α̂2

(
t

tγ̇ cs

)−4m′

+ · · ·
]

= − t

τγ̇

[
1 − |γ̇ t0|mα̂1

(
t

τγ̇

)−2m′

− |γ̇ t0|2m α̂2

(
t

τγ̇

)−4m′

+ · · ·
]

. (A.1)

This expansion can be considered as the long time asymptote of the dynamics around the plateau
fc, or as the short time asymptote of the final relaxation process leading down from fc to zero.
In the latter context, considering the higher order corrections � − fc ∝ Ğ + εγ̇ Ğ(2) + · · ·,
one recognizes that each order Ğ(i) possesses a long time expansion like equation (A.1),



S3630 O Henrich et al

containing the powers |γ̇ t0|m . Resumming the series leads to equation (4), with known short
time expansions of the functions:

�+(t̃ → 0) → fc − (1 − fc)
2 t̃, �+(i)(t̃ → 0) → (1 − fc)

2α̂i t̃
1−2im′

, (A.2)

which shows that the expansion coefficients ci in equation (5) can be calculated from convergent
integrals as long as i < 1/m ′, which gives i � 3 for the F (γ̇ )

12 -model.
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